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SYNOPSIS

The thesis describes the results of research on heat trans-

fer and flow phencmena in a liquid jet, impinging on a flat per-

pendicular surface. In this investigation, the various zones of

flow inside the impinging jet were examined, and the general

character of the flow in each of them was established. Neglecting

gravity and surface tension and using the order of magnitude

analysis it was possible to specify the momentum equation for the

viscous flow zone, where the thickness of the flowing layer is

small compared with the distance from the impingement point, and

where the velocity is mainly radial. These equations were solved

by the assumption of the existence of a "similarity solution"

which enabled the statement of two ordinary differential equa-

tions and their solutions. These solutions describe the stream

function and the local layer thickness, and they enable the

determination of the local velocity components.

Using assumptions similar to those described above, and

substituting the calculated velocity, it was possible to state

the appropriate energy equation. This equation was solved by

separation of variables, the local temperature being a function

of the surface temperature and distance from the surface. The

heat transfer coefficient, Nusselt Number, and the mixing cup

temperature were derived from the above solution.

Apart from the analytical study, an experimental investiga-

tion was initiated with the following scope:

1. qualitative confirmation of the basic assumptions;
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2. qualitiative study of the flow;

3. quantitative confirmation of the theoretical solution.

By the simultaneous performance of the analytic and

experimental studies, checking and improvement of the assumptions

were possible. Comparison of calculated and measured values of

heat transfer showed slight deviations only. A method to calcu-

late the separation diameter of the jet from the flat surface

was derived as an additional result.

As a result of this research, it is possible to calculate

heat transfer between laminar impinging jet and a flat surface

based on the following parameters: flow conditions in the free

jet, properties of the flowing liquid, and the solid surface

temperature.
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SYMBOLS AND ABBREVIATIONS

a constant (29)

a constant (14a)

ao constant (52)

a, constant (53)

A constant (49 )

A 2  constant (29)

C specific heat

d 2r
d h diameter cross section of flow x4

H hydrauic diameter = wet circumference
D constant (18)

f dimensionless stream function (26)

g dimensionless thickness of flowing layer (25)

h heat transfer coefficient

k thermal conductivity

K function (51)

L function (51)

M function (51)

Nu Nusselt number

P pressure

Pr Prandtl number

q dimensionless distance from impingement point (14)

qt heat flux

Q volumetric flow rate of jet

Q surface temperature (46) (only in Chapter 3)

r distance from impingement point

Re Reynolds number

t temperature

u velocity in the direction of r

v velocity in the direction of y

v



V. average velocity of the free jet
1

y distance from flat surface

Y temperature function (50)

Greek Letters

a thermal diffusion

X constant (40, 47)

6 thickness of flowing layer

Sdimensionless distance from flat surface in stagnant flow (2a)

n dimensionless distance from flat surface (11)

e dimensionless temperature (36)

v kinematic viscosity

p density

stream function in stagnant flow (la)

stream function

Indices and Notations

( )o values in the diameter do (in Chapter lb)

( ) average value in the direction of yav

( )i values in the free jet

( )mix average values in the liquid after separation

( )s values in the dameter of separation

( ) value on the flat surface
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HEAT TRANSFER BETWEEN LAMINAR LIQUID JET AND A FLAT SURFACE

Micha Wolfshtein

CHAPTER A

FOREWORD

1. General Background

Gaseous or liquid jets find many uses in modern technology, /4I

in turbines and jet engines. Indeed, many papers exist which deal

with the conditions of flow in various jets.(see [1, 2, 3]). Iti

is worthwhile mentioning that the pressure exerted by a liquid

jet impinging on a flat surface was measured by Reich [4]. He

found also that the velocity after the impact with the flat surface

is almost parallel to the surface.

The work of Glauert [5] merits special attention. He calculatedl

analytically the distribution of the velocity in incompressible,

steady, turbulent and laminar, two-dimensional gas jets having

axial symmetry, which impinge on a flat surface. His work was

checked experimentally by Bakke [6] and Bradshaw and Love [7],

who proved that the description given by him is accurate a suf-

ficient distance from the impingement point of the turbulent jet.

The problem of the distribution of the velocity and pressure in

the impact region is mentioned in the last reference, and is

dealt with in the case of the turbulent gaseous jet,

Because of insufficient knowledge concerning the flow, we

do not have enough data on heat transfer. Included in [8, 9, 10,

11, 12, 13, and 14] are results of various experiments which

measure heat transfer between turbulent mixing jets and plane
* Translator's note: Numbersl in margin indicate pagination in
original foreign text. 1



surfaces. Wolfshtein and Stotter [15] tried to solve the heat

transfer equation analytically,(using the equation for the velocity

which was developed by Glauert [5] for the case of an incompressiblel

gas jet which mixes with its surrounding. The mentioned material

does not provide sufficient information concerning the flow con-

ditions and heat transfer in the impinging jets, and it is impos-

sible to base an engineering design or an accurate scientific

calculation on the information now available. This situation is

in contrast to the many design problems which deal especially

with heat transfer between impinging jets and plane surfaces.

Among these problems are the problems of the turbulent jets of

hot burning gases which are produced by missiles and impinge on

the launching pads, turbulent jets of air for cooling industrial

plants, laminar jets of oil for cooling engine pistons, and lami-

nar jets for cooling or heating liquids in chemical plants.

2. Types of Jets

As a basis for an accurate analysis of flow and heat trans-

fer in incompressible impinging jets, we suggest the following

classification according to Wolfshtein and Stotter [15]:

1) a turbulent jet of a liquid having a viscosity similar

to that of the surroundings, such as a gas jet in the atmosphere

or a water jet in water.

2) laminar jet with conditions similar to paragraph 1. /5

3) turbulent jet of a liquid having a viscosity different

by an order of magnitude from that of its surroundings, such as

a water jet in the atmosphere.

4) laminar jet under conditions similar to paragraph 3.
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Most of the mentioned references deal with jets which are

included in paragraph 1. Glauert [5], Wolfshtein and Stotter [151

deal with paragraph 2. Research on cases mentioned in paragraphs

3 and 4 has not reached the author's attention, except for the

research mentioned in [4], which deals especially with the distri-

bution of pressures at the impingement point.

Considering the character of the problem, the following

division is desired between two zones in any jet.

1) The impingement zone, in which the two components of

the velocity have the same order of magnitude, and where changes

in the direction of the momentum occur.

2) The parallel flow zone, in which the main component of

the velocity is parallel to the surface, but the second component

is much smaller. This zone is characterized by a large ratio of

the distance to the impingement point and the distance to the

solid body.

The mathematical methods which one uses in dealing with

analytical solutions of flow differ considerably in the two

mentioned zones because of the different characteristics of the

simplifying assumptions which are used in the two zones. One may

expect to have a difference between the two solutions and it will

be necessary to make adjustments.

3. Definition of the Problem

The purpose of the present research is to suggest a method

by which one may calculate heat transfer between a steady:

impinging laminar jet, which does not mix with its surrounding

(having a viscosity much greater than its surrounding) and a plane

surface perpendicular to it. The derived solutions are not

3



suitable for the impingement point and its immediate surroundingsl

but only to a zone which is sufficiently remote from the impinge-

ment point. The research is divided into four main parts,

1) analytic examination of the flow;

2) analytic examination of heat transfer;

3) experimental confirmation of the flow solution

4) experimental confirmation of the heat transfer solution.

An intermediate result which was obtained in the course of

this research but which will not be described here is the solu-

tion of the problem of heat transfer between a steady impinging

jet which mixes with a surrounding having similar characteristics,

and a plane surface which is perpendicular to it. A paper which

describes the solution was published with the authorization of

the Graduate School [15].

The following research will not deal with the influence of

surface tension or the phenomena under discussion.

CHAPTER B

ANALYTIC SOLUTION OF THE FLOW PROBLEM /6

1. Assumptions and Methods of Solution

In order to solve the Navier-Stokes equation for the case

of the impact of a steady laminar jet with a plane surface, it is

necessary to make the following assumptions:

a) the influence of surface tension and gravity on the flow

in the discussed zone is negligible;

14



b) the thickness of the flowing layer is much smaller than

the distance to the impingement point;

c) the characteristics of the liquid (viscosity, density,

heat conductivity, etc.) do not change considerably.

From the physical point of view, it is possible to divide

the jet under consideration into four main parts as in Figure 1:

Figure 1. Impinging jet and division into zones.

a- free jet which moves with a constant velocity perpendicular to
the plane surface; b- potential flow with a free surface on one
side and a boundary layer on the plane surface from the other
side in the zone of impact where the changes in direction of
momentum and velocity occur; c- viscous flow with a free surface
on one side and a plane solid surface on the other side and the
velocity approximately parallel to the plane surface. In this
region, the thickness of the flowing layer is small and therefore,
the influence of the viscous forces is very great, which results
in a considerable decrease in the velocity; d- viscous flow with
a very low velocity.

As mentioned in the Foreword, the present research deals /7

only with zone c. Assumption a is inappropriate for zone d, and

assumption b is inappropriate for zones a and b.

5



An order of magnitude analysis of the Navier-Stokes equations

in zone c, assuming a steady axially-symmetric flow, and by

neglecting body forces (for a detailed description of this method

of analysis, the reader is referred to the book of Schlichting

[16], pp. 107 - 109), which yields the following results:

U -(1)

(2)

Since, on top of the free surface (where the liquid is in touch

with the atmosphere), the pressure is constant, we get

7=I
and therefore, in the present zone, we get

P = Constant (4)

At this stage, it is worthwhile to mention that even though

Equation (1) is typical to boundary layer phenomena, the flow in

question is not a flow of a boundary layer in the usual sense,

because the potential flow which usually exists at a sufficient

distance from the boundary is totally missing here. As a result,

there is a drastic reduction in the velocity, and there is a

physical limit to the thickness of the layer, which depends on

the existance of the continuity equation.
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The initial conditions for the differential equations are:

For the diameter d , the thickness of the flowing layer is

6 and the average radial velocity is Uoo av

One can chose d arbitrarily with the following condition
O

5$ u l (5)
do

Also, for the continuity equation to apply, we have

Q=-M do u , (6)

2. Mathematical Statement of the Flow Problem

The continuity equation (3) can immediately be integrated

by defining a stream function i, and so

- (8)

The stream function has to fulfill the condition

where 6 is the thickness of the flowing layer which depends only

on the radius. On the other hand, if a similarity solution

exists, i has to be a unique function of the new variable n, and

it is logical to define this function as follows;

7



where

(1* (10)

From this(definition yields another condition

Let us now define the layer thickness by

ir 0(12)

where 60 is defined in the previous chapter, and g is a unique

function of the radius.

On examining Equation (9), it is reasonable to define f as

follows:

(13)

Now it is necessary to determine whether it is possible to find

a transformation which will fulfill conditions (9), (10), and

(13). Before doing so, let us examine the dimensionless radius

± (14)

By inserting Equations (7), (8), (9), (10), (13), and (14) into

Equation (1), and performing all the necessary differentiations,

we obtain the following equation

f"f .i (15)

where ' denotes differentiation with respect to n, and where

P ' - (16)
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It is clear that Equation (15) can fulfill the unique

dependence of f on n only if the following exists

e. = 0 (17)

where a is a constant. It is easier to deal with the equation

if we define

2 D(18)

It is also necessary to define the boundary conditions. One

boundary condition is defined in Equation (10)., Another boundary

condition is a result of the fact that there is no slipping on

the plane surface y = 0. A third boundary condition is connected

with the shear force on the free surface y = 6, which is propor-

tional to the second derivative of f. In this case, it is possible

to assume that this force is zero because of the low viscosity of

the air, relative to liquids under normal conditions. It is /10

possible now to formulate the problem by the following equations

III % (19)

with the boundary conditions

- (20a)

=1. / = 1 (20b)

(20c)

/ =r3 D (21)



with the boundary conditions

q = 1  g, 1 (22)

The velocities u and v are defined by the functions f and g,

since when we insert (9), (13), and (14) into (7) and (8), we

get

(23)

(T= UO (2)4)

3. Solution of Layer Thickness

Equation (21) is immediately integrable:

or, after inserting the boundary condition (22)

0q 4. (25)

In Figure 2 we show the function g for the value D = 0.726,

which fits formula 15a in appendix A.

In practice, the minimum will depend on the value of D, or

a, which has not been fixed yet and which depends on the solution

of f. But, in this case, we prefer to choose that value of D

because,lin the author's opinion, it is very close to the true

value of D (see Appendix A), and therefore, the behavior of the

10
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function g will resemble the curve in Figure 2, /12

For values of D close to the mentioned value, it is found

that the reduction of the velocity, because of the shear forces,

is so strong.that not only is there a radial expansion of the

layer, but the layer thickness increases with the distance from

the impingement point.

4. Solution of the Stream Function

Equation (19) does not have a closed solution. It was

solved by the expansion

and by inserting (26) intol(19) and using the boundary conditions

(20a) and (20b), one gets

3=A0(27)

- . 2 "(28)

By inserting (20c) and the connection (11), which is derived

from the definition of the stream function, it is possible to fix

the numerical value of A 2 and a as follows:

12



(29)

and the solution is

8-d3q C2L- Ik (30)

5. Analysis of the Solutions /13

The function f and its derivatives f' and f" are shown in

Figure 3. One sees that f is quite close to being linearly

dependent on n, and that the boundary condition (28) has a marked

effect on the value of f' only close to the limit n = 1. Choosingi
a different value for f" (1) will not have a big effect on the

values of f' and f for sufficiently small values of n. It is

possible to use this analysis for various values of f" (1) and

obtain solutions which will converge for decreasing values of n.

We may mention that one possible solution was suggested by

Glauert [5], for the case where the viscosity and density of the

liquid equals that of its surroundings.

Assumption (28) has other results. It fixes the value of

the coefficient appearing in the formula for g (25) when the

numerical( value of g depends only on the average velocity Uoav'

and the layer thickness 6o within the diameter do .

It is worthwhile to mention again that Equations (25) and

(30) describe the flow field only when 6/d + 0, and when 6/d

approaches sufficiently large values (close to the impingement

point), the present solution loses its accuracy and is not useful

any more.

13
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Inserting the solution (25), in order to solve 6/d, yields

__ 2c. a-- ~. L~(31)

It is clear, therefore, that the existance of the solution depends

first of all on Re being sufficiently large. For sufficiently

large values of q, the solution is inadequate.

These considerations make it possible to define (depending

on the accuracy required) the boundary of zone c as described in

Chapter B-l,jwhere this solution exists.

CHAPTER C

ANALYTICAL SOLUTION OF THE HEAT TRANSFER PROBLEM

1. Statement of the Energy Equation

The solution of the energy equation in zone c relies on

the above solution of the momentum equation in the same zone,

and therefore all the general assumptions described in Chapter B-1I

are relevant here.

Using these assumptions, and using order of magnitude analysis,

led us in Chapter B-lto formulate Equations (1) and (2) as residues

of the momentum equations for axially symmetric flow. In a

similar way, it is possible to develop the following equation

from the general energy equation for axial symmetry flow:

-- + -- = ( (32)
lu DY(32)

With the boundary condition

S(33a)

(33b)
% 0-o (33c)

15



The boundary conditions (33a) and (33b) are general and it

is possible to fit them to different cases. The boundary condi-

tion (33c) is less general and has the physical meaning that the

amount of heat transferred by radiation and free convection from

the flowing liquid to its surrounding is negligible relative to

the total amount of heat transferred from the solid surface to

the liquid. It is clear that this condition exists only at

sufficiently low temperatures and when the jet velocity and

thermal diffusivity (a) are large.

It is necessary to insert in Equation (32) and boundary

condition (33) the values u and v according to (18), (23), (24),

and (25), and perform a transformation from a system with

coordinates y, r to a system with coordinates n, q, by using

Equations (11) and (14). As a result, the energy equation is

given by the following expression:

- (34)

and the boundary conditions (33a) and (33b) become

V (35a)

0 (35b)

The boundary condition (33c) states that the surface of the liquid

is an adiabatic plane. But in the q-n plane, the velocity does

not have a component in the n direction, but only in the q

direction, and therefore we have

2 f 0 (.35c)

while, from heat balance considerations (Figure 4), one gets for

nonadiabatic conditions

16



free surface

ht~vrr dr3 (g4)~
Figure 4. Heat transfer near a free surface.

day e (35c)*

It is desirable to insert a dimensionless expression for the

temperature

e~ ~(3 6)

and because of the homogeneity of Equation (34), we get the final

equation with the boundary condition

J PJ II/A 0 (37)

C9 a,) (38a)

0 9 (38b)

DO
(38c)

17



2. The Separation of the Variables and Its Physical Significance /17

In this chapter we shall try to perform a separation of

variables in Equation (37), and find the boundary condition (38)

for making this separation possible, To do so, it is necessary

to assume that 6 is a product of a function of n times a function

of q

9= (.39)

By inserting (39) into (37) and performing separation of variables

we get the equation

and the boundary conditions will be

4sf 93~ y24')(4{1a)

0 6,)= y co)c (41b)

§- T- (41c)

and immediately it is clear that relations (41a) and (41b) are

a necessary condition for separation of variables.

Assuming that these conditions exist, the full formulation

of the problem is as follows:

8(43a)

1-0 (43b)

18



(.414)

3. Derivation of the Surface Temperature

By inserting g from (25) and D from (18) into Equation (44),

we get the solution

L (145)

and by inserting the boundary condition (44) together with (22),

we get

±(146)

We find the ratio /18
A=A

and if X, which is calculated according to (47), is constant (and

does not change with q), it is possible to perform separation of

variables by using Equation (25) and the following binomial

results from (46):A

where

I Sr> 0
One sees immediately that, if the value of A and Pr fulfill the

condition

319

19



then when q is sufficiently large, 0 is approximated by

and so the shape of U depends on the parameter 8,

4. Derivation of the Layer Temperature

The temperature distribution in the flowing layer is described

by the function Y which is given by (42) and (43). In the case

of a large Prandtl number, it is possible to assume that most

of the temperature gradient is close to the wall, and it is

possible to retain only the first part of f' and assume

Then we get the equation

Y A (.48)

with the boundary condition (43), where X is given by (47), and

A =2..89A (49)

This equation can be solved by the expansion

Y= .o 1]Z~. ,., ' z o

where /19

1< N =.2. - .... (3

n - W (51)

k(o) L N (o>,(0)- '

20



and by inserting the boundary condition (42), onelgets

(52)

(53)

The values -- 'as function of A are shown in Figure 51. The

function Y itself is drawn in Figure 6 for various values of A,

and it is clear that if A is sujfficiently large, the approximation

of a linear distribution of velocities is a good one, since the

temperature gradient close to the wall is large.

Explicitly, one obtains the following formula;

By inserting (39), (46), and (54), the final result is

:-- 2f_ <4, r.: 1 ..55)

5. Derivation of the Heat Flux and the Heat Transfer Coefficients

By using Equations (13) and (55), it is possible to calculate /22

the local heat flux

(56)

21
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and from Formula (56), it is possible to calculate the local

film coefficient

(a -- . . (57)

and also the local Nusselt number

Al , I (58)

and the mixing temperature r

i u ' m (5 9 )

To achieve this goal, one has to calculate the dimensionless

expression 4

which can be reduced to

By means of (60), one can calculate the mixing temperature

Because of the practical importance of Equation (61), it is

useful to insert in it Equations (46) and (60) and obtain

= (62)

where (-a1 ) is defined by (51) and X by (47).

24



It is important to remember that the solution exists only /23

under the conditions described in Chapter C-21and formulated by

the boundary condition (41).

Although one is not always sure that these conditions exist,

usually the influence of the initial condition is limited to a

certain distance, and therefore, for a sufficiently large q, the

solution may even describe a situation where the boundary con-

ditions do not fulfill (41).

CHAPTER D

THE EXPERIMENTAL APPARATUS

1. The Purpose of the Experiments /24

At the same time that the theoretical work of the research

was under way, an experiment was performed to check qualitatively

and quantitatively the nature of the physical phenomena in order

to justify the theoretical assumptions and their regions of

validity.

Various phenomena were checked in this part of the research,

which relate to the problems of flow and heat transfer. Also,

the practical physical phenomena were analyzed, and a quantitative

comparison was performed between the calculated and experimental

results.

2. Description of the Apparatus

The experimental work was performed in a special apparatus

built for that purpose. The apparatus is shown in detail in

Figures 7 and 8 and in photos 1 and 2.
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Figure 10. Distribution of thermocouples on thermocouple plate.

O- connection to lower surface; Fl- connection to upper surface:
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3. Description of the Experiments

The experiments performed included the impingement of a

viscous liquid jet on heated and unheated surfaces, and a quali-

tative and quantitative check of the thermal field and the flow,

A solution of glycerin and water was chosen, since it was easily

possible to create low and high concentrations and since this solu-

tion has a relatively high viscosity.

The experiments were divided into two series as follows:

a) checking the shape of the flow. In the first series

of measurements, the general shape of the flow was checked, To

do so, the thermocouple plate 5 was interchanged with a trans-

parent plate. By splashing the jet from below on the transparent

plate, it was possible to observe the general shape of the flow,

By attaching the surplus line (14) to the container 1 high above

the liquid surface, small bubbles of air were introduced into the

liquid, and it was possible to watch them accompanying the flow

through the transparent plate. In this way, it was possible to

follow the flow lines in the layer, and get a qualitative idea

about the velocity in the layer.

b) checking the temperature field: in this series of

measurements, all the different parts of the apparatus were assem-

bled, and the effect of the jet impingement from below on the

temperature field of the thermocouple plate which was heated from

above, was checked.

For that purpose, the quantity of liquid, flowing through

the jet, was measured by a graduated cylinder and stop watch

(using the set of valves 17), the specific gravity of the liquid

was measured, and the temperature at the jet orifice and where it

leaves the apparatus was measured. The temperature was also
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measured by means of the potentiometer 11 from both sides of the

thermocouple plate, and the separation diameter of the jet from

the board was noted.

CHAPTER E

RESULTS OF THE EXPERIMENTS-PLOW /30

1. Qualitative Description of the Flow

The first purpose of the experiments was to create a laminar

flow, and to check the characteristics of this flow relative to

the flow described in Chapter B-lI. The experiments described in

paragraph a of Chapter D-3j served this purpose. Photographs were

taken of the flow through a transparent plate (Photos 4, 5, 6, 7,

and 8), where one can identify clearly the flow lines. The

various zones which are described in Cihapter B-l are clearly seen

in these pictures.

The central zone (fits zones a and b).

Zone c - where a radial flow exists on top of the solid

surface, and where the radial component of the velocity u is

much greater than the perpendicular component of the velocity v.

In this zone, there is not a marked effect of the surface tension

and gravitational forces.

In zone d the velocity is already very small, since most

of the momentum is transferred into heat and therefore gravita-

tional and surface tension forces are the main acting forces.

Equilibrium between these two forces determines the diameter of

separation of the liquid from the plane surface.

It is possible to identify two forms of separation: a) the

separation of the liquid as a continuous film (Photo 4) having a

conic envelope, with a wide base resting on the separation diameter

on top of the plane surface, and a narrow base on top of the holder
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of the orifice; and b) the separation of the liquid at some points

on the separation diameter (Pihotos 5, 6, 7, 8), where in each

such point a vefrtical jet is created pointing downward.

According to the observations, the number of separation

points is fixed so that the distance between them is always

constant (balance between surface tension and gravity).

Photo 4. Re. = 1612; d. = 0.6 cm.*
1 1

2. Determination of the Separation Diameter /31

As a result of the measurements performed, it was found that

the thickness of the flowing layer at the separation point is

fixed and does not depend on the flow parameters. It is impor-

tant to note that the measurements were performed at almost

constant values of density and surface tension (of the flowing

liquid), and therefore, this behavior is anticipated, since the

separation occurs only after the "decay" of the velocity. This

phenomena enables one to calculate the diameter of separation.

Photo 5. Rei = 1127; di = 0.6 cm.*1

Calculation of the dependence of the separation diameter on /32

the surface tension and specific gravity is outside the scope of

this research, and will not be dealt with.

In the following, we shall calculate the layer thickness at

the separation point by means of Equations (16), (18), (25):

[t 7J7.I .1. (63)

* Translator's nodte: Photos not supplied.1
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Photo 6. Re. = 930; di = 0.6 cm.* /33

TABLE OF RESULTS

Experiment No. r.i cm Re i  qs 6s cm

13 0.1095 1448 4.49 0.184

14 0,1095 798 4,31 0.207

16 0.051 546 5.15 0.156

17 0,1095 1633 4.94 0.214

21 0.1095 1062 4.41 0.197

24 0,271 462 2.28 0.172

25 0.271 685 2,66 0,205

26 0.271 1132 2.82 0.195

The resulting average value of the separation diameter is 0.191

cm.

Photo 7. Re i = 563; di = 0.1 cm.*1 /34

Photo 8. Re. = 375; d. = 0.1 cm.*j
1 1

CHAPTER F

RESULTS OF EXPERIMENTS - HEAT TRANSFER

The temperature difference tmix - ti is calculated by the
m1x

formulae

A= ,/7tPCr(47)

* Translator's note: Photos not supplied.
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2,A= gX (49)

according tolFigure 4,

-dl - D,) (53)

d- (62)

The results are compiled in the accompanying table. The

large difference between the measured and calculated values of

tmix - ti are explained by the fact that the difference was not

directly measured but rather calculated as a difference between

two measurements. Since the voltage produced by the thermo-

couples, which is a measure of the value tmix - ti., is between

0.01 and 0.04 millivolts, the accuracy could not be improved.

It is worthwhile noting that the average of the error is

Another interesting result is the distribution of the

isotherms in the thermocouple plate (Figure 11), for experiment

number 26. These lines were calculated by relaxing the equation

of heat transfer to an axially symmetric body

where the boundary conditions for this equation are inserted from

the experimental measurements.
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It is obvious that the heat transfer takes place via forced

convection to the jet, while the free convection in a diameter

greater than the separation diameter does not play any role in

this phenomenon.

CHAPTER G

CONCLUSION

1. Summary

After checking the flow conditions in a laminar jet impinging /38

perpendicularly on a flat surface, it became clear that it is

possible to divide the jet into zones having different flow

behavior. It was found out that the dominant zone which contri-

butes the most to heat transfer is the zone where the main com-

ponent of the velocity is parallel to the flat surface. In this

zone one may neglect some parts from the momentum equation, and

get a solution to the energy equation (when some of the velocity

values and the thickness of the flowing layer in a certain diameter

in this zone are known). The solution indicates that the flowing

layer thickness reaches its minimum, and then grows parabolically

as function of the dimensionless diameter q. The velocity profile

is an almost linear function of the dimensionless thickness n.

The thickness of the flowing layer at the separation point was

calculated using the developed formulas, and it was checked for

all the cases that its value is a fixed number, i.e., 0.191 cm,

as one may anticipate in light of the fact that the density and

surface tension are almost constant in these experiments. By

inserting the solution of the velocity into the energy equation,

we calculated the temperature and heat transfer coefficients, as

a function of the flowing liquid characteristics, the jet condi-

tions and the surface temperature. The average difference between

the theoretical cAlculations and the experimental results is about

6%, and therefore it seems reasonable to suggest that this method
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TABLE OF RESULTS

HEAT TRANSFER

a1  A t -t gs q P Re. r No.
Measured lated± r

late d-

oc oc oc cm

0.298 0.332 0.0475 60.2 26.4 3.9 1.795 14.7 4.49 106 1448 0.1095 13

1.540 0.505 0.Q500 56.1 24.6 6.1 1.657 13.5 4.31 111 798 0.1095 14

0.869 1.057 _ 0.059 45.1 19.8 11.3 1.584 19.4 5.15 111 546 0.051 16

0.372 0.380 0.052 53.8 23.6 3.5 2.085 17.9 4.94 81 1633 0.1095 17

1.118 0.628 0.061 - 43.2 18.9 5.9 1.746 14.2 4.41 79 1062 0.1095 21

0.645 0.813 0.072 34.0 14.9 8.9 1.269 3.9 2.28 77 462 0.271 24

0.421 0.468 0.060 44.2 19.4 5.4 1.426 5.2 2.66 81 685 0.271 25

0.298 0.275 0.052 53.2 23.3 3.3 1.607 5.9 2.82 73 1132 0.271 26



of calculation developed in this work is appropriate for calcu-

lating heat transfer between an impinging jet and a flat surface.

2. Recommendations on Further Research

Not all the subjects mentioned in this research were explored

and it is necessary to continue as follows:

Experimental subjects:

measurements should be taken of the flowing layer thickness;

accurate measurements should be taken of the difference

between the temperature of the incoming flow and at the mixing cup.

Theoretical subjects:

the solution of the stream in the impact zone;

the solution for the case of liquids having characteristics

which are functions of temperature;

it is also desirable to continue the research of temporarilyl

unstable jets,oof jet impingement'on surfaces which are not per-

pendicular to the jet, and on simultaneous impingement of several

jets.
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APPENDIX A

CALCULATION OF THE INITIAL CONDITIONS AT DIAMETER d

The theoretical solution to the flow field described in this

work is valid only for distances sufficiently far from the

impingement point, when the thickness of the flowing layer is

greater than this distance. In order to make numerical calcula-

tions, it was necessary to estimate the average velocity and the

thickness of the layer at diameter d . In order to do so, we

assumed the existence of a velocity field as described in Figure

A-I, where the velocity field at a diameter smaller than d0 is

the potential velocity field with a viscous boundary layer. At

diameters greater than do, it changes into a viscousl velocity

field as described in Chapter B of this paper. The mentioned

potential field is special in the sense that on the free surface

of the liquid (which constitutes a streamline), the pressure is

constant. An exact solution to such a velocity field has not

been found yet,l and therefore, we tried to use the solution to

a stagnant flow which does not give a constant pressure along an

external streamline. The mentioned solution was found by Fr~ssling

[17], and quoted by Schlichting [16]. This solution deals with

a flow which impinges on a plane perpendicular surface, which

disperses on it radially, and it describes accurately only that

portion of the flow which is close to the jet center. In the

intermediate zone, which is between the zone where a solution of

the above problem exists, and the zone where the solution is

given by this paper, one has an unknown flow field, Anyway,

from Figure 2Aone may see a marked resemblance between the

form of ' which describes the radial velocity of the suggested

solution, and between the form of f' which describes the radial

velocity of the solution described in this paper. Therefore, we
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Distribution of the
velocities in the v-y
direction

Stagnant flow Intermediate region Jet solution

Distribution of the
velocities in the u-r
direction

Stagnant flow Intermediate region Jet solution

Figure A-1. Qualitative description of the velocity field in the
impinging jet.
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assumed the existance of a radial velocity in the intermediate

zone.

The solution for the stagnant flow is

/-- (la)

where

(2a)

But in a flow as described here, /42

= (23)

where

(11)

and from Figure 2-A, one can see that by chosing

(3a)

one obtains

I' (4a)

and the following two relations are established:

(5a)

S(6a)
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which can be reduced by using (93-a) and (4-a) to

(.7a)

0. '2 'o 8a)

Since the velocity of the surface of the liquid inside the

diameter d has a potential, one has

4 26 61o V;-(9a)

and the continuity equation is satisfied

= 7a Q /o. (10a)

A simultaneous solution of Equations (7a), (8a), (9a), and (10a)

yields the following results

UO - (1 lla) /43

"t ; (12a)

(13a)

E= ' (.14a)
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Equations (12a) and (13a) are described in Figure 3-A.

Inserting Equations (11a), (12a), and (13a) in Equation (25)

yields the accurate value of g

0. 7 6 O. 2(15a)

It is important to note that g does not depend on the

Reynolds number but only on q, but q itself depends on the

Reynolds number, according to the formula

w - r (16a)

The function g is described in Figure 2.
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